本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{(\frac{-1}{x})} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{(\frac{-1}{x})}\right)}{dx}\\=&({e}^{(\frac{-1}{x})}((\frac{--1}{x^{2}})ln(e) + \frac{(\frac{-1}{x})(0)}{(e)}))\\=&\frac{{e}^{(\frac{-1}{x})}}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{{e}^{(\frac{-1}{x})}}{x^{2}}\right)}{dx}\\=&\frac{-2{e}^{(\frac{-1}{x})}}{x^{3}} + \frac{({e}^{(\frac{-1}{x})}((\frac{--1}{x^{2}})ln(e) + \frac{(\frac{-1}{x})(0)}{(e)}))}{x^{2}}\\=&\frac{-2{e}^{(\frac{-1}{x})}}{x^{3}} + \frac{{e}^{(\frac{-1}{x})}}{x^{4}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2{e}^{(\frac{-1}{x})}}{x^{3}} + \frac{{e}^{(\frac{-1}{x})}}{x^{4}}\right)}{dx}\\=&\frac{-2*-3{e}^{(\frac{-1}{x})}}{x^{4}} - \frac{2({e}^{(\frac{-1}{x})}((\frac{--1}{x^{2}})ln(e) + \frac{(\frac{-1}{x})(0)}{(e)}))}{x^{3}} + \frac{-4{e}^{(\frac{-1}{x})}}{x^{5}} + \frac{({e}^{(\frac{-1}{x})}((\frac{--1}{x^{2}})ln(e) + \frac{(\frac{-1}{x})(0)}{(e)}))}{x^{4}}\\=&\frac{6{e}^{(\frac{-1}{x})}}{x^{4}} - \frac{6{e}^{(\frac{-1}{x})}}{x^{5}} + \frac{{e}^{(\frac{-1}{x})}}{x^{6}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{6{e}^{(\frac{-1}{x})}}{x^{4}} - \frac{6{e}^{(\frac{-1}{x})}}{x^{5}} + \frac{{e}^{(\frac{-1}{x})}}{x^{6}}\right)}{dx}\\=&\frac{6*-4{e}^{(\frac{-1}{x})}}{x^{5}} + \frac{6({e}^{(\frac{-1}{x})}((\frac{--1}{x^{2}})ln(e) + \frac{(\frac{-1}{x})(0)}{(e)}))}{x^{4}} - \frac{6*-5{e}^{(\frac{-1}{x})}}{x^{6}} - \frac{6({e}^{(\frac{-1}{x})}((\frac{--1}{x^{2}})ln(e) + \frac{(\frac{-1}{x})(0)}{(e)}))}{x^{5}} + \frac{-6{e}^{(\frac{-1}{x})}}{x^{7}} + \frac{({e}^{(\frac{-1}{x})}((\frac{--1}{x^{2}})ln(e) + \frac{(\frac{-1}{x})(0)}{(e)}))}{x^{6}}\\=&\frac{-24{e}^{(\frac{-1}{x})}}{x^{5}} + \frac{36{e}^{(\frac{-1}{x})}}{x^{6}} - \frac{12{e}^{(\frac{-1}{x})}}{x^{7}} + \frac{{e}^{(\frac{-1}{x})}}{x^{8}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!