本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({(x + 1)}^{2}{(x - 1)}^{\frac{1}{2}})}{(({(x + 4)}^{2}){e}^{x})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{(x - 1)^{\frac{1}{2}}x^{2}{e}^{(-x)}}{(x + 4)^{2}} + \frac{2(x - 1)^{\frac{1}{2}}x{e}^{(-x)}}{(x + 4)^{2}} + \frac{(x - 1)^{\frac{1}{2}}{e}^{(-x)}}{(x + 4)^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{(x - 1)^{\frac{1}{2}}x^{2}{e}^{(-x)}}{(x + 4)^{2}} + \frac{2(x - 1)^{\frac{1}{2}}x{e}^{(-x)}}{(x + 4)^{2}} + \frac{(x - 1)^{\frac{1}{2}}{e}^{(-x)}}{(x + 4)^{2}}\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x + 4)^{3}})(x - 1)^{\frac{1}{2}}x^{2}{e}^{(-x)} + \frac{(\frac{\frac{1}{2}(1 + 0)}{(x - 1)^{\frac{1}{2}}})x^{2}{e}^{(-x)}}{(x + 4)^{2}} + \frac{(x - 1)^{\frac{1}{2}}*2x{e}^{(-x)}}{(x + 4)^{2}} + \frac{(x - 1)^{\frac{1}{2}}x^{2}({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))}{(x + 4)^{2}} + 2(\frac{-2(1 + 0)}{(x + 4)^{3}})(x - 1)^{\frac{1}{2}}x{e}^{(-x)} + \frac{2(\frac{\frac{1}{2}(1 + 0)}{(x - 1)^{\frac{1}{2}}})x{e}^{(-x)}}{(x + 4)^{2}} + \frac{2(x - 1)^{\frac{1}{2}}{e}^{(-x)}}{(x + 4)^{2}} + \frac{2(x - 1)^{\frac{1}{2}}x({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))}{(x + 4)^{2}} + (\frac{-2(1 + 0)}{(x + 4)^{3}})(x - 1)^{\frac{1}{2}}{e}^{(-x)} + \frac{(\frac{\frac{1}{2}(1 + 0)}{(x - 1)^{\frac{1}{2}}}){e}^{(-x)}}{(x + 4)^{2}} + \frac{(x - 1)^{\frac{1}{2}}({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))}{(x + 4)^{2}}\\=&\frac{-2(x - 1)^{\frac{1}{2}}x^{2}{e}^{(-x)}}{(x + 4)^{3}} + \frac{x^{2}{e}^{(-x)}}{2(x - 1)^{\frac{1}{2}}(x + 4)^{2}} + \frac{2(x - 1)^{\frac{1}{2}}x{e}^{(-x)}}{(x + 4)^{2}} - \frac{4(x - 1)^{\frac{1}{2}}x{e}^{(-x)}}{(x + 4)^{3}} + \frac{x{e}^{(-x)}}{(x - 1)^{\frac{1}{2}}(x + 4)^{2}} + \frac{(x - 1)^{\frac{1}{2}}{e}^{(-x)}}{(x + 4)^{2}} - \frac{2(x - 1)^{\frac{1}{2}}x{e}^{(-x)}}{(x + 4)^{2}} - \frac{2(x - 1)^{\frac{1}{2}}{e}^{(-x)}}{(x + 4)^{3}} + \frac{{e}^{(-x)}}{2(x - 1)^{\frac{1}{2}}(x + 4)^{2}} - \frac{(x - 1)^{\frac{1}{2}}x^{2}{e}^{(-x)}}{(x + 4)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!