本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数2sin(x)(1 - {e}^{(\frac{2(x - 1)}{a})}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2sin(x) - 2{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2sin(x) - 2{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)\right)}{dx}\\=&2cos(x) - 2({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))sin(x) - 2{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)\\=&2cos(x) - \frac{4{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)}{a} - 2{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2cos(x) - \frac{4{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)}{a} - 2{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)\right)}{dx}\\=&2*-sin(x) - \frac{4({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))sin(x)}{a} - \frac{4{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)}{a} - 2({e}^{(\frac{2x}{a} - \frac{2}{a})}((\frac{2}{a} + 0)ln(e) + \frac{(\frac{2x}{a} - \frac{2}{a})(0)}{(e)}))cos(x) - 2{e}^{(\frac{2x}{a} - \frac{2}{a})}*-sin(x)\\=&-2sin(x) - \frac{8{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)}{a^{2}} - \frac{8{e}^{(\frac{2x}{a} - \frac{2}{a})}cos(x)}{a} + 2{e}^{(\frac{2x}{a} - \frac{2}{a})}sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!