本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{2}(1 - {e}^{(\frac{(x - 1)}{a})}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - x^{2}{e}^{(\frac{x}{a} - \frac{1}{a})} + x^{2}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - x^{2}{e}^{(\frac{x}{a} - \frac{1}{a})} + x^{2}\right)}{dx}\\=& - 2x{e}^{(\frac{x}{a} - \frac{1}{a})} - x^{2}({e}^{(\frac{x}{a} - \frac{1}{a})}((\frac{1}{a} + 0)ln(e) + \frac{(\frac{x}{a} - \frac{1}{a})(0)}{(e)})) + 2x\\=& - 2x{e}^{(\frac{x}{a} - \frac{1}{a})} - \frac{x^{2}{e}^{(\frac{x}{a} - \frac{1}{a})}}{a} + 2x\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - 2x{e}^{(\frac{x}{a} - \frac{1}{a})} - \frac{x^{2}{e}^{(\frac{x}{a} - \frac{1}{a})}}{a} + 2x\right)}{dx}\\=& - 2{e}^{(\frac{x}{a} - \frac{1}{a})} - 2x({e}^{(\frac{x}{a} - \frac{1}{a})}((\frac{1}{a} + 0)ln(e) + \frac{(\frac{x}{a} - \frac{1}{a})(0)}{(e)})) - \frac{2x{e}^{(\frac{x}{a} - \frac{1}{a})}}{a} - \frac{x^{2}({e}^{(\frac{x}{a} - \frac{1}{a})}((\frac{1}{a} + 0)ln(e) + \frac{(\frac{x}{a} - \frac{1}{a})(0)}{(e)}))}{a} + 2\\=& - 2{e}^{(\frac{x}{a} - \frac{1}{a})} - \frac{4x{e}^{(\frac{x}{a} - \frac{1}{a})}}{a} - \frac{x^{2}{e}^{(\frac{x}{a} - \frac{1}{a})}}{a^{2}} + 2\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!