本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(1 + tan(x)) 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(tan(x) + 1)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(tan(x) + 1)\right)}{dx}\\=&\frac{(sec^{2}(x)(1) + 0)*\frac{1}{2}}{(tan(x) + 1)^{\frac{1}{2}}}\\=&\frac{sec^{2}(x)}{2(tan(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{sec^{2}(x)}{2(tan(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{\frac{-1}{2}(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{\frac{3}{2}}})sec^{2}(x)}{2} + \frac{2sec^{2}(x)tan(x)}{2(tan(x) + 1)^{\frac{1}{2}}}\\=&\frac{-sec^{4}(x)}{4(tan(x) + 1)^{\frac{3}{2}}} + \frac{tan(x)sec^{2}(x)}{(tan(x) + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-sec^{4}(x)}{4(tan(x) + 1)^{\frac{3}{2}}} + \frac{tan(x)sec^{2}(x)}{(tan(x) + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{-(\frac{\frac{-3}{2}(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{\frac{5}{2}}})sec^{4}(x)}{4} - \frac{4sec^{4}(x)tan(x)}{4(tan(x) + 1)^{\frac{3}{2}}} + (\frac{\frac{-1}{2}(sec^{2}(x)(1) + 0)}{(tan(x) + 1)^{\frac{3}{2}}})tan(x)sec^{2}(x) + \frac{sec^{2}(x)(1)sec^{2}(x)}{(tan(x) + 1)^{\frac{1}{2}}} + \frac{tan(x)*2sec^{2}(x)tan(x)}{(tan(x) + 1)^{\frac{1}{2}}}\\=&\frac{3sec^{6}(x)}{8(tan(x) + 1)^{\frac{5}{2}}} - \frac{3tan(x)sec^{4}(x)}{2(tan(x) + 1)^{\frac{3}{2}}} + \frac{sec^{4}(x)}{(tan(x) + 1)^{\frac{1}{2}}} + \frac{2tan^{2}(x)sec^{2}(x)}{(tan(x) + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!