本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{{d}^{2}}{(d({x}^{2}))} - 2{\frac{1}{({x}^{2})}}^{2}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{d}{x^{2}} - \frac{2}{x^{4}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{d}{x^{2}} - \frac{2}{x^{4}}\right)}{dx}\\=&\frac{d*-2}{x^{3}} - \frac{2*-4}{x^{5}}\\=&\frac{-2d}{x^{3}} + \frac{8}{x^{5}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2d}{x^{3}} + \frac{8}{x^{5}}\right)}{dx}\\=&\frac{-2d*-3}{x^{4}} + \frac{8*-5}{x^{6}}\\=&\frac{6d}{x^{4}} - \frac{40}{x^{6}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{6d}{x^{4}} - \frac{40}{x^{6}}\right)}{dx}\\=&\frac{6d*-4}{x^{5}} - \frac{40*-6}{x^{7}}\\=&\frac{-24d}{x^{5}} + \frac{240}{x^{7}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-24d}{x^{5}} + \frac{240}{x^{7}}\right)}{dx}\\=&\frac{-24d*-5}{x^{6}} + \frac{240*-7}{x^{8}}\\=&\frac{120d}{x^{6}} - \frac{1680}{x^{8}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!