本次共计算 1 个题目:每一题对 t 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(\frac{({x}^{2} + {y}^{2})}{({x}^{2} + {y}^{2} + {z}^{2})}) 关于 t 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(\frac{x^{2}}{(x^{2} + y^{2} + z^{2})} + \frac{y^{2}}{(x^{2} + y^{2} + z^{2})})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(\frac{x^{2}}{(x^{2} + y^{2} + z^{2})} + \frac{y^{2}}{(x^{2} + y^{2} + z^{2})})\right)}{dt}\\=&\frac{((\frac{-(0 + 0 + 0)}{(x^{2} + y^{2} + z^{2})^{2}})x^{2} + 0 + (\frac{-(0 + 0 + 0)}{(x^{2} + y^{2} + z^{2})^{2}})y^{2} + 0)*\frac{1}{2}}{(\frac{x^{2}}{(x^{2} + y^{2} + z^{2})} + \frac{y^{2}}{(x^{2} + y^{2} + z^{2})})^{\frac{1}{2}}}\\=&\frac{0}{2}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!