本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(cos(x)) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(cos(x))\right)}{dx}\\=&\frac{-sin(x)}{(cos(x))}\\=&\frac{-sin(x)}{cos(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-sin(x)}{cos(x)}\right)}{dx}\\=&\frac{-cos(x)}{cos(x)} - \frac{sin(x)sin(x)}{cos^{2}(x)}\\=& - \frac{sin^{2}(x)}{cos^{2}(x)} - 1\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - \frac{sin^{2}(x)}{cos^{2}(x)} - 1\right)}{dx}\\=& - \frac{2sin(x)cos(x)}{cos^{2}(x)} - \frac{sin^{2}(x)*2sin(x)}{cos^{3}(x)} + 0\\=& - \frac{2sin(x)}{cos(x)} - \frac{2sin^{3}(x)}{cos^{3}(x)}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{2sin(x)}{cos(x)} - \frac{2sin^{3}(x)}{cos^{3}(x)}\right)}{dx}\\=& - \frac{2cos(x)}{cos(x)} - \frac{2sin(x)sin(x)}{cos^{2}(x)} - \frac{2*3sin^{2}(x)cos(x)}{cos^{3}(x)} - \frac{2sin^{3}(x)*3sin(x)}{cos^{4}(x)}\\=& - \frac{8sin^{2}(x)}{cos^{2}(x)} - \frac{6sin^{4}(x)}{cos^{4}(x)} - 2\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!