本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(2x + 1)}^{2}{(2 - 3x)}^{\frac{1}{3}}{\frac{1}{(x - 3)}}^{(\frac{2}{3})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{4(-3x + 2)^{\frac{1}{3}}x^{2}}{(x - 3)^{\frac{2}{3}}} + \frac{4(-3x + 2)^{\frac{1}{3}}x}{(x - 3)^{\frac{2}{3}}} + \frac{(-3x + 2)^{\frac{1}{3}}}{(x - 3)^{\frac{2}{3}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{4(-3x + 2)^{\frac{1}{3}}x^{2}}{(x - 3)^{\frac{2}{3}}} + \frac{4(-3x + 2)^{\frac{1}{3}}x}{(x - 3)^{\frac{2}{3}}} + \frac{(-3x + 2)^{\frac{1}{3}}}{(x - 3)^{\frac{2}{3}}}\right)}{dx}\\=&\frac{4(\frac{\frac{1}{3}(-3 + 0)}{(-3x + 2)^{\frac{2}{3}}})x^{2}}{(x - 3)^{\frac{2}{3}}} + 4(-3x + 2)^{\frac{1}{3}}(\frac{\frac{-2}{3}(1 + 0)}{(x - 3)^{\frac{5}{3}}})x^{2} + \frac{4(-3x + 2)^{\frac{1}{3}}*2x}{(x - 3)^{\frac{2}{3}}} + \frac{4(\frac{\frac{1}{3}(-3 + 0)}{(-3x + 2)^{\frac{2}{3}}})x}{(x - 3)^{\frac{2}{3}}} + 4(-3x + 2)^{\frac{1}{3}}(\frac{\frac{-2}{3}(1 + 0)}{(x - 3)^{\frac{5}{3}}})x + \frac{4(-3x + 2)^{\frac{1}{3}}}{(x - 3)^{\frac{2}{3}}} + \frac{(\frac{\frac{1}{3}(-3 + 0)}{(-3x + 2)^{\frac{2}{3}}})}{(x - 3)^{\frac{2}{3}}} + (-3x + 2)^{\frac{1}{3}}(\frac{\frac{-2}{3}(1 + 0)}{(x - 3)^{\frac{5}{3}}})\\=&\frac{-4x^{2}}{(-3x + 2)^{\frac{2}{3}}(x - 3)^{\frac{2}{3}}} - \frac{8(-3x + 2)^{\frac{1}{3}}x^{2}}{3(x - 3)^{\frac{5}{3}}} + \frac{8(-3x + 2)^{\frac{1}{3}}x}{(x - 3)^{\frac{2}{3}}} - \frac{4x}{(-3x + 2)^{\frac{2}{3}}(x - 3)^{\frac{2}{3}}} - \frac{8(-3x + 2)^{\frac{1}{3}}x}{3(x - 3)^{\frac{5}{3}}} + \frac{4(-3x + 2)^{\frac{1}{3}}}{(x - 3)^{\frac{2}{3}}} - \frac{1}{(-3x + 2)^{\frac{2}{3}}(x - 3)^{\frac{2}{3}}} - \frac{2(-3x + 2)^{\frac{1}{3}}}{3(x - 3)^{\frac{5}{3}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!