本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数1 - 2xarcsin(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - 2xarcsin(x) + 1\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - 2xarcsin(x) + 1\right)}{dx}\\=& - 2arcsin(x) - 2x(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) + 0\\=& - 2arcsin(x) - \frac{2x}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - 2arcsin(x) - \frac{2x}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=& - 2(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})}) - 2(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})x - \frac{2}{(-x^{2} + 1)^{\frac{1}{2}}}\\=& - \frac{2x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{2}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{2}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - \frac{2x^{2}}{(-x^{2} + 1)^{\frac{3}{2}}} - \frac{2}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{2}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=& - 2(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x^{2} - \frac{2*2x}{(-x^{2} + 1)^{\frac{3}{2}}} - 2(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}}) - 2(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})\\=& - \frac{6x^{3}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{8x}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( - \frac{6x^{3}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{8x}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=& - 6(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{3} - \frac{6*3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} - 8(\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x - \frac{8}{(-x^{2} + 1)^{\frac{3}{2}}}\\=& - \frac{30x^{4}}{(-x^{2} + 1)^{\frac{7}{2}}} - \frac{42x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} - \frac{8}{(-x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!