本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数xsqrt(\frac{(x - 1)(x - 2)(x - 4)}{(x - 3)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = xsqrt(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( xsqrt(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})\right)}{dx}\\=&sqrt(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)}) + \frac{x((\frac{-(1 + 0)}{(x - 3)^{2}})x^{3} + \frac{3x^{2}}{(x - 3)} - 7(\frac{-(1 + 0)}{(x - 3)^{2}})x^{2} - \frac{7*2x}{(x - 3)} + 14(\frac{-(1 + 0)}{(x - 3)^{2}})x + \frac{14}{(x - 3)} - 8(\frac{-(1 + 0)}{(x - 3)^{2}}))*\frac{1}{2}}{(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}}\\=&sqrt(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)}) - \frac{x^{4}}{2(x - 3)^{2}(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}} + \frac{3x^{3}}{2(x - 3)(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}} + \frac{7x^{3}}{2(x - 3)^{2}(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}} - \frac{7x^{2}}{(x - 3)(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}} - \frac{7x^{2}}{(x - 3)^{2}(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}} + \frac{7x}{(x - 3)(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}} + \frac{4x}{(x - 3)^{2}(\frac{x^{3}}{(x - 3)} - \frac{7x^{2}}{(x - 3)} + \frac{14x}{(x - 3)} - \frac{8}{(x - 3)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!