本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(1 - {x}^{2})}{(1 + {x}^{2})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{-x^{2}}{(x^{2} + 1)} + \frac{1}{(x^{2} + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{-x^{2}}{(x^{2} + 1)} + \frac{1}{(x^{2} + 1)})\right)}{dx}\\=&\frac{(-(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x^{2} - \frac{2x}{(x^{2} + 1)} + (\frac{-(2x + 0)}{(x^{2} + 1)^{2}}))}{(\frac{-x^{2}}{(x^{2} + 1)} + \frac{1}{(x^{2} + 1)})}\\=&\frac{2x^{3}}{(\frac{-x^{2}}{(x^{2} + 1)} + \frac{1}{(x^{2} + 1)})(x^{2} + 1)^{2}} - \frac{2x}{(x^{2} + 1)(\frac{-x^{2}}{(x^{2} + 1)} + \frac{1}{(x^{2} + 1)})} - \frac{2x}{(\frac{-x^{2}}{(x^{2} + 1)} + \frac{1}{(x^{2} + 1)})(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!