本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(x + 1)}^{\frac{1}{2}}{(2 - x)}^{3}{\frac{1}{(x - 1)}}^{4} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-(x + 1)^{\frac{1}{2}}x^{3}}{(x - 1)^{4}} + \frac{6(x + 1)^{\frac{1}{2}}x^{2}}{(x - 1)^{4}} - \frac{12(x + 1)^{\frac{1}{2}}x}{(x - 1)^{4}} + \frac{8(x + 1)^{\frac{1}{2}}}{(x - 1)^{4}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-(x + 1)^{\frac{1}{2}}x^{3}}{(x - 1)^{4}} + \frac{6(x + 1)^{\frac{1}{2}}x^{2}}{(x - 1)^{4}} - \frac{12(x + 1)^{\frac{1}{2}}x}{(x - 1)^{4}} + \frac{8(x + 1)^{\frac{1}{2}}}{(x - 1)^{4}}\right)}{dx}\\=&\frac{-(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})x^{3}}{(x - 1)^{4}} - (x + 1)^{\frac{1}{2}}(\frac{-4(1 + 0)}{(x - 1)^{5}})x^{3} - \frac{(x + 1)^{\frac{1}{2}}*3x^{2}}{(x - 1)^{4}} + \frac{6(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})x^{2}}{(x - 1)^{4}} + 6(x + 1)^{\frac{1}{2}}(\frac{-4(1 + 0)}{(x - 1)^{5}})x^{2} + \frac{6(x + 1)^{\frac{1}{2}}*2x}{(x - 1)^{4}} - \frac{12(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})x}{(x - 1)^{4}} - 12(x + 1)^{\frac{1}{2}}(\frac{-4(1 + 0)}{(x - 1)^{5}})x - \frac{12(x + 1)^{\frac{1}{2}}}{(x - 1)^{4}} + \frac{8(\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}})}{(x - 1)^{4}} + 8(x + 1)^{\frac{1}{2}}(\frac{-4(1 + 0)}{(x - 1)^{5}})\\=&\frac{-x^{3}}{2(x + 1)^{\frac{1}{2}}(x - 1)^{4}} + \frac{4(x + 1)^{\frac{1}{2}}x^{3}}{(x - 1)^{5}} - \frac{3(x + 1)^{\frac{1}{2}}x^{2}}{(x - 1)^{4}} + \frac{3x^{2}}{(x + 1)^{\frac{1}{2}}(x - 1)^{4}} - \frac{24(x + 1)^{\frac{1}{2}}x^{2}}{(x - 1)^{5}} + \frac{12(x + 1)^{\frac{1}{2}}x}{(x - 1)^{4}} - \frac{6x}{(x + 1)^{\frac{1}{2}}(x - 1)^{4}} + \frac{48(x + 1)^{\frac{1}{2}}x}{(x - 1)^{5}} - \frac{32(x + 1)^{\frac{1}{2}}}{(x - 1)^{5}} + \frac{4}{(x + 1)^{\frac{1}{2}}(x - 1)^{4}} - \frac{12(x + 1)^{\frac{1}{2}}}{(x - 1)^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!