本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(x + 1)}^{1}{(2 - x)}^{3}{\frac{1}{(x - 1)}}^{4}}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{-1}{2}x^{4}}{(x - 1)^{4}} + \frac{\frac{5}{2}x^{3}}{(x - 1)^{4}} - \frac{3x^{2}}{(x - 1)^{4}} - \frac{2x}{(x - 1)^{4}} + \frac{4}{(x - 1)^{4}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{-1}{2}x^{4}}{(x - 1)^{4}} + \frac{\frac{5}{2}x^{3}}{(x - 1)^{4}} - \frac{3x^{2}}{(x - 1)^{4}} - \frac{2x}{(x - 1)^{4}} + \frac{4}{(x - 1)^{4}}\right)}{dx}\\=&\frac{-1}{2}(\frac{-4(1 + 0)}{(x - 1)^{5}})x^{4} - \frac{\frac{1}{2}*4x^{3}}{(x - 1)^{4}} + \frac{5}{2}(\frac{-4(1 + 0)}{(x - 1)^{5}})x^{3} + \frac{\frac{5}{2}*3x^{2}}{(x - 1)^{4}} - 3(\frac{-4(1 + 0)}{(x - 1)^{5}})x^{2} - \frac{3*2x}{(x - 1)^{4}} - 2(\frac{-4(1 + 0)}{(x - 1)^{5}})x - \frac{2}{(x - 1)^{4}} + 4(\frac{-4(1 + 0)}{(x - 1)^{5}})\\=&\frac{2x^{4}}{(x - 1)^{5}} - \frac{2x^{3}}{(x - 1)^{4}} - \frac{10x^{3}}{(x - 1)^{5}} + \frac{15x^{2}}{2(x - 1)^{4}} + \frac{12x^{2}}{(x - 1)^{5}} - \frac{6x}{(x - 1)^{4}} + \frac{8x}{(x - 1)^{5}} - \frac{16}{(x - 1)^{5}} - \frac{2}{(x - 1)^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!