本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(x) + {(2 - x)}^{3}{\frac{1}{(x - 1)}}^{4} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(x) - \frac{x^{3}}{(x - 1)^{4}} + \frac{6x^{2}}{(x - 1)^{4}} - \frac{12x}{(x - 1)^{4}} + \frac{8}{(x - 1)^{4}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(x) - \frac{x^{3}}{(x - 1)^{4}} + \frac{6x^{2}}{(x - 1)^{4}} - \frac{12x}{(x - 1)^{4}} + \frac{8}{(x - 1)^{4}}\right)}{dx}\\=&\frac{\frac{1}{2}}{(x)^{\frac{1}{2}}} - (\frac{-4(1 + 0)}{(x - 1)^{5}})x^{3} - \frac{3x^{2}}{(x - 1)^{4}} + 6(\frac{-4(1 + 0)}{(x - 1)^{5}})x^{2} + \frac{6*2x}{(x - 1)^{4}} - 12(\frac{-4(1 + 0)}{(x - 1)^{5}})x - \frac{12}{(x - 1)^{4}} + 8(\frac{-4(1 + 0)}{(x - 1)^{5}})\\=&\frac{1}{2x^{\frac{1}{2}}} + \frac{4x^{3}}{(x - 1)^{5}} - \frac{3x^{2}}{(x - 1)^{4}} - \frac{24x^{2}}{(x - 1)^{5}} + \frac{12x}{(x - 1)^{4}} + \frac{48x}{(x - 1)^{5}} - \frac{32}{(x - 1)^{5}} - \frac{12}{(x - 1)^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!