本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({e}^{x}sin(x) + {x}^{2}cos(x))}{tan(1 + {(tan(2x))}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{e}^{x}sin(x)}{tan(tan^{2}(2x) + 1)} + \frac{x^{2}cos(x)}{tan(tan^{2}(2x) + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{e}^{x}sin(x)}{tan(tan^{2}(2x) + 1)} + \frac{x^{2}cos(x)}{tan(tan^{2}(2x) + 1)}\right)}{dx}\\=&\frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(x)}{tan(tan^{2}(2x) + 1)} + \frac{{e}^{x}cos(x)}{tan(tan^{2}(2x) + 1)} + \frac{{e}^{x}sin(x)*-sec^{2}(tan^{2}(2x) + 1)(2tan(2x)sec^{2}(2x)(2) + 0)}{tan^{2}(tan^{2}(2x) + 1)} + \frac{2xcos(x)}{tan(tan^{2}(2x) + 1)} + \frac{x^{2}*-sin(x)}{tan(tan^{2}(2x) + 1)} + \frac{x^{2}cos(x)*-sec^{2}(tan^{2}(2x) + 1)(2tan(2x)sec^{2}(2x)(2) + 0)}{tan^{2}(tan^{2}(2x) + 1)}\\=&\frac{-4{e}^{x}sin(x)tan(2x)sec^{2}(2x)sec^{2}(tan^{2}(2x) + 1)}{tan^{2}(tan^{2}(2x) + 1)} + \frac{{e}^{x}cos(x)}{tan(tan^{2}(2x) + 1)} + \frac{{e}^{x}sin(x)}{tan(tan^{2}(2x) + 1)} - \frac{4x^{2}cos(x)tan(2x)sec^{2}(2x)sec^{2}(tan^{2}(2x) + 1)}{tan^{2}(tan^{2}(2x) + 1)} - \frac{x^{2}sin(x)}{tan(tan^{2}(2x) + 1)} + \frac{2xcos(x)}{tan(tan^{2}(2x) + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!