本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{({y}^{4} + 1)}{({x}^{2} + 2)}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})\right)}{dx}\\=&\frac{((\frac{-(2x + 0)}{(x^{2} + 2)^{2}})y^{4} + 0 + (\frac{-(2x + 0)}{(x^{2} + 2)^{2}}))}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})}\\=&\frac{-2y^{4}x}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{2}} - \frac{2x}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2y^{4}x}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{2}} - \frac{2x}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{2}}\right)}{dx}\\=&\frac{-2(\frac{-((\frac{-(2x + 0)}{(x^{2} + 2)^{2}})y^{4} + 0 + (\frac{-(2x + 0)}{(x^{2} + 2)^{2}}))}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})^{2}})y^{4}x}{(x^{2} + 2)^{2}} - \frac{2(\frac{-2(2x + 0)}{(x^{2} + 2)^{3}})y^{4}x}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})} - \frac{2y^{4}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{2}} - \frac{2(\frac{-((\frac{-(2x + 0)}{(x^{2} + 2)^{2}})y^{4} + 0 + (\frac{-(2x + 0)}{(x^{2} + 2)^{2}}))}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})^{2}})x}{(x^{2} + 2)^{2}} - \frac{2(\frac{-2(2x + 0)}{(x^{2} + 2)^{3}})x}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})} - \frac{2}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{2}}\\=&\frac{-4y^{8}x^{2}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})^{2}(x^{2} + 2)^{4}} - \frac{8y^{4}x^{2}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})^{2}(x^{2} + 2)^{4}} + \frac{8y^{4}x^{2}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{3}} - \frac{2y^{4}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{2}} - \frac{4x^{2}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})^{2}(x^{2} + 2)^{4}} + \frac{8x^{2}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{3}} - \frac{2}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!