本次共计算 1 个题目:每一题对 x 求 15 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(4{x}^{2} - 1)}{({x}^{2} - 1)} 关于 x 的 15 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{4x^{2}}{(x^{2} - 1)} - \frac{1}{(x^{2} - 1)}\\\\ &\color{blue}{函数的 15 阶导数:} \\=&\frac{-171399494762496000x^{17}}{(x^{2} - 1)^{16}} + \frac{771297726431232000x^{15}}{(x^{2} - 1)^{15}} - \frac{1435470768635904000x^{13}}{(x^{2} - 1)^{14}} + \frac{1424758300213248000x^{11}}{(x^{2} - 1)^{13}} - \frac{810130424463360000x^{9}}{(x^{2} - 1)^{12}} + \frac{263125005631488000x^{7}}{(x^{2} - 1)^{11}} - \frac{45695373115392000x^{5}}{(x^{2} - 1)^{10}} + \frac{3598719860736000x^{3}}{(x^{2} - 1)^{9}} - \frac{83691159552000x}{(x^{2} - 1)^{8}} + \frac{208893134241792000x^{11}}{(x^{2} - 1)^{14}} - \frac{147296440811520000x^{9}}{(x^{2} - 1)^{13}} + \frac{55236165304320000x^{7}}{(x^{2} - 1)^{12}} - \frac{10545086103552000x^{5}}{(x^{2} - 1)^{11}} + \frac{878757175296000x^{3}}{(x^{2} - 1)^{10}} - \frac{20922789888000x}{(x^{2} - 1)^{9}} + \frac{42849873690624000x^{15}}{(x^{2} - 1)^{16}} - \frac{149974557917184000x^{13}}{(x^{2} - 1)^{15}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!