本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数3{cos(x)}^{4} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 3cos^{4}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 3cos^{4}(x)\right)}{dx}\\=&3*-4cos^{3}(x)sin(x)\\=&-12sin(x)cos^{3}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -12sin(x)cos^{3}(x)\right)}{dx}\\=&-12cos(x)cos^{3}(x) - 12sin(x)*-3cos^{2}(x)sin(x)\\=&-12cos^{4}(x) + 36sin^{2}(x)cos^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( -12cos^{4}(x) + 36sin^{2}(x)cos^{2}(x)\right)}{dx}\\=&-12*-4cos^{3}(x)sin(x) + 36*2sin(x)cos(x)cos^{2}(x) + 36sin^{2}(x)*-2cos(x)sin(x)\\=&120sin(x)cos^{3}(x) - 72sin^{3}(x)cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 120sin(x)cos^{3}(x) - 72sin^{3}(x)cos(x)\right)}{dx}\\=&120cos(x)cos^{3}(x) + 120sin(x)*-3cos^{2}(x)sin(x) - 72*3sin^{2}(x)cos(x)cos(x) - 72sin^{3}(x)*-sin(x)\\=&120cos^{4}(x) - 576sin^{2}(x)cos^{2}(x) + 72sin^{4}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!