本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(x + sqrt(1 + {x}^{2})) + {e}^{(sin(\frac{1}{x})sin(\frac{1}{x}))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(x + sqrt(x^{2} + 1)) + {e}^{sin^{2}(\frac{1}{x})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(x + sqrt(x^{2} + 1)) + {e}^{sin^{2}(\frac{1}{x})}\right)}{dx}\\=&\frac{(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))} + ({e}^{sin^{2}(\frac{1}{x})}((\frac{2sin(\frac{1}{x})cos(\frac{1}{x})*-1}{x^{2}})ln(e) + \frac{(sin^{2}(\frac{1}{x}))(0)}{(e)}))\\=&\frac{x}{(x + sqrt(x^{2} + 1))(x^{2} + 1)^{\frac{1}{2}}} + \frac{1}{(x + sqrt(x^{2} + 1))} - \frac{2{e}^{sin^{2}(\frac{1}{x})}sin(\frac{1}{x})cos(\frac{1}{x})}{x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!