本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(sqrt(\frac{(1 - sin(x))}{(1 + sin(x))})) + {e}^{tan(x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(sqrt(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)})) + {e}^{tan(x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(sqrt(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)})) + {e}^{tan(x)}\right)}{dx}\\=&\frac{(-(\frac{-(cos(x) + 0)}{(sin(x) + 1)^{2}})sin(x) - \frac{cos(x)}{(sin(x) + 1)} + (\frac{-(cos(x) + 0)}{(sin(x) + 1)^{2}}))*\frac{1}{2}}{(sqrt(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)}))(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)})^{\frac{1}{2}}} + ({e}^{tan(x)}((sec^{2}(x)(1))ln(e) + \frac{(tan(x))(0)}{(e)}))\\=&\frac{sin(x)cos(x)}{2(sin(x) + 1)^{2}(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)})^{\frac{1}{2}}sqrt(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)})} - \frac{cos(x)}{2(sin(x) + 1)(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)})^{\frac{1}{2}}sqrt(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)})} - \frac{cos(x)}{2(sin(x) + 1)^{2}(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)})^{\frac{1}{2}}sqrt(\frac{-sin(x)}{(sin(x) + 1)} + \frac{1}{(sin(x) + 1)})} + {e}^{tan(x)}sec^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!