本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(5 - cos(x))}{(5 + sin(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{cos(x)}{(sin(x) + 5)} + \frac{5}{(sin(x) + 5)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{cos(x)}{(sin(x) + 5)} + \frac{5}{(sin(x) + 5)}\right)}{dx}\\=& - (\frac{-(cos(x) + 0)}{(sin(x) + 5)^{2}})cos(x) - \frac{-sin(x)}{(sin(x) + 5)} + 5(\frac{-(cos(x) + 0)}{(sin(x) + 5)^{2}})\\=&\frac{cos^{2}(x)}{(sin(x) + 5)^{2}} + \frac{sin(x)}{(sin(x) + 5)} - \frac{5cos(x)}{(sin(x) + 5)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!