本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(-{x}^{3} - 2{x}^{2} - 3x)}{(x + 3)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-x^{3}}{(x + 3)} - \frac{2x^{2}}{(x + 3)} - \frac{3x}{(x + 3)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-x^{3}}{(x + 3)} - \frac{2x^{2}}{(x + 3)} - \frac{3x}{(x + 3)}\right)}{dx}\\=&-(\frac{-(1 + 0)}{(x + 3)^{2}})x^{3} - \frac{3x^{2}}{(x + 3)} - 2(\frac{-(1 + 0)}{(x + 3)^{2}})x^{2} - \frac{2*2x}{(x + 3)} - 3(\frac{-(1 + 0)}{(x + 3)^{2}})x - \frac{3}{(x + 3)}\\=&\frac{x^{3}}{(x + 3)^{2}} - \frac{3x^{2}}{(x + 3)} + \frac{2x^{2}}{(x + 3)^{2}} - \frac{4x}{(x + 3)} + \frac{3x}{(x + 3)^{2}} - \frac{3}{(x + 3)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!