本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(cos(x) - xsin(x))}{(sin(x) + xcos(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{cos(x)}{(sin(x) + xcos(x))} - \frac{xsin(x)}{(sin(x) + xcos(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{cos(x)}{(sin(x) + xcos(x))} - \frac{xsin(x)}{(sin(x) + xcos(x))}\right)}{dx}\\=&(\frac{-(cos(x) + cos(x) + x*-sin(x))}{(sin(x) + xcos(x))^{2}})cos(x) + \frac{-sin(x)}{(sin(x) + xcos(x))} - (\frac{-(cos(x) + cos(x) + x*-sin(x))}{(sin(x) + xcos(x))^{2}})xsin(x) - \frac{sin(x)}{(sin(x) + xcos(x))} - \frac{xcos(x)}{(sin(x) + xcos(x))}\\=&\frac{-2cos^{2}(x)}{(sin(x) + xcos(x))^{2}} + \frac{3xsin(x)cos(x)}{(sin(x) + xcos(x))^{2}} - \frac{2sin(x)}{(sin(x) + xcos(x))} - \frac{x^{2}sin^{2}(x)}{(sin(x) + xcos(x))^{2}} - \frac{xcos(x)}{(sin(x) + xcos(x))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!