本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(x + \frac{{({x}^{2} + 1)}^{2}}{1}) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(x + x^{4} + 2x^{2} + 1)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(x + x^{4} + 2x^{2} + 1)\right)}{dx}\\=&\frac{(1 + 4x^{3} + 2*2x + 0)}{(x + x^{4} + 2x^{2} + 1)}\\=&\frac{4x^{3}}{(x + x^{4} + 2x^{2} + 1)} + \frac{4x}{(x + x^{4} + 2x^{2} + 1)} + \frac{1}{(x + x^{4} + 2x^{2} + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{4x^{3}}{(x + x^{4} + 2x^{2} + 1)} + \frac{4x}{(x + x^{4} + 2x^{2} + 1)} + \frac{1}{(x + x^{4} + 2x^{2} + 1)}\right)}{dx}\\=&4(\frac{-(1 + 4x^{3} + 2*2x + 0)}{(x + x^{4} + 2x^{2} + 1)^{2}})x^{3} + \frac{4*3x^{2}}{(x + x^{4} + 2x^{2} + 1)} + 4(\frac{-(1 + 4x^{3} + 2*2x + 0)}{(x + x^{4} + 2x^{2} + 1)^{2}})x + \frac{4}{(x + x^{4} + 2x^{2} + 1)} + (\frac{-(1 + 4x^{3} + 2*2x + 0)}{(x + x^{4} + 2x^{2} + 1)^{2}})\\=&\frac{-16x^{6}}{(x + x^{4} + 2x^{2} + 1)^{2}} - \frac{32x^{4}}{(x + x^{4} + 2x^{2} + 1)^{2}} + \frac{12x^{2}}{(x + x^{4} + 2x^{2} + 1)} - \frac{16x^{2}}{(x + x^{4} + 2x^{2} + 1)^{2}} - \frac{8x^{3}}{(x + x^{4} + 2x^{2} + 1)^{2}} - \frac{8x}{(x + x^{4} + 2x^{2} + 1)^{2}} + \frac{4}{(x + x^{4} + 2x^{2} + 1)} - \frac{1}{(x + x^{4} + 2x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!