本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x(({(\frac{(1 - x)}{(1 + x)})}^{\frac{1}{2}})) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}x\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}x\right)}{dx}\\=&(\frac{\frac{1}{2}(-(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{1}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}}))}{(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}})x + (\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}\\=&\frac{x^{2}}{2(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}(x + 1)^{2}} - \frac{x}{2(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}(x + 1)} - \frac{x}{2(\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}(x + 1)^{2}} + (\frac{-x}{(x + 1)} + \frac{1}{(x + 1)})^{\frac{1}{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!