本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(ln(1 + x))}{(1 - x)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(x + 1)}{(-x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(x + 1)}{(-x + 1)}\right)}{dx}\\=&(\frac{-(-1 + 0)}{(-x + 1)^{2}})ln(x + 1) + \frac{(1 + 0)}{(-x + 1)(x + 1)}\\=&\frac{ln(x + 1)}{(-x + 1)^{2}} + \frac{1}{(x + 1)(-x + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{ln(x + 1)}{(-x + 1)^{2}} + \frac{1}{(x + 1)(-x + 1)}\right)}{dx}\\=&(\frac{-2(-1 + 0)}{(-x + 1)^{3}})ln(x + 1) + \frac{(1 + 0)}{(-x + 1)^{2}(x + 1)} + \frac{(\frac{-(1 + 0)}{(x + 1)^{2}})}{(-x + 1)} + \frac{(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{(x + 1)}\\=&\frac{2ln(x + 1)}{(-x + 1)^{3}} + \frac{1}{(x + 1)(-x + 1)^{2}} - \frac{1}{(x + 1)^{2}(-x + 1)} + \frac{1}{(-x + 1)^{2}(x + 1)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2ln(x + 1)}{(-x + 1)^{3}} + \frac{1}{(x + 1)(-x + 1)^{2}} - \frac{1}{(x + 1)^{2}(-x + 1)} + \frac{1}{(-x + 1)^{2}(x + 1)}\right)}{dx}\\=&2(\frac{-3(-1 + 0)}{(-x + 1)^{4}})ln(x + 1) + \frac{2(1 + 0)}{(-x + 1)^{3}(x + 1)} + \frac{(\frac{-(1 + 0)}{(x + 1)^{2}})}{(-x + 1)^{2}} + \frac{(\frac{-2(-1 + 0)}{(-x + 1)^{3}})}{(x + 1)} - \frac{(\frac{-2(1 + 0)}{(x + 1)^{3}})}{(-x + 1)} - \frac{(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{(x + 1)^{2}} + \frac{(\frac{-2(-1 + 0)}{(-x + 1)^{3}})}{(x + 1)} + \frac{(\frac{-(1 + 0)}{(x + 1)^{2}})}{(-x + 1)^{2}}\\=&\frac{6ln(x + 1)}{(-x + 1)^{4}} + \frac{2}{(x + 1)(-x + 1)^{3}} - \frac{2}{(x + 1)^{2}(-x + 1)^{2}} + \frac{4}{(-x + 1)^{3}(x + 1)} + \frac{2}{(x + 1)^{3}(-x + 1)} - \frac{1}{(-x + 1)^{2}(x + 1)^{2}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{6ln(x + 1)}{(-x + 1)^{4}} + \frac{2}{(x + 1)(-x + 1)^{3}} - \frac{2}{(x + 1)^{2}(-x + 1)^{2}} + \frac{4}{(-x + 1)^{3}(x + 1)} + \frac{2}{(x + 1)^{3}(-x + 1)} - \frac{1}{(-x + 1)^{2}(x + 1)^{2}}\right)}{dx}\\=&6(\frac{-4(-1 + 0)}{(-x + 1)^{5}})ln(x + 1) + \frac{6(1 + 0)}{(-x + 1)^{4}(x + 1)} + \frac{2(\frac{-(1 + 0)}{(x + 1)^{2}})}{(-x + 1)^{3}} + \frac{2(\frac{-3(-1 + 0)}{(-x + 1)^{4}})}{(x + 1)} - \frac{2(\frac{-2(1 + 0)}{(x + 1)^{3}})}{(-x + 1)^{2}} - \frac{2(\frac{-2(-1 + 0)}{(-x + 1)^{3}})}{(x + 1)^{2}} + \frac{4(\frac{-3(-1 + 0)}{(-x + 1)^{4}})}{(x + 1)} + \frac{4(\frac{-(1 + 0)}{(x + 1)^{2}})}{(-x + 1)^{3}} + \frac{2(\frac{-3(1 + 0)}{(x + 1)^{4}})}{(-x + 1)} + \frac{2(\frac{-(-1 + 0)}{(-x + 1)^{2}})}{(x + 1)^{3}} - \frac{(\frac{-2(-1 + 0)}{(-x + 1)^{3}})}{(x + 1)^{2}} - \frac{(\frac{-2(1 + 0)}{(x + 1)^{3}})}{(-x + 1)^{2}}\\=&\frac{24ln(x + 1)}{(-x + 1)^{5}} + \frac{6}{(x + 1)(-x + 1)^{4}} - \frac{6}{(x + 1)^{2}(-x + 1)^{3}} + \frac{18}{(-x + 1)^{4}(x + 1)} + \frac{6}{(x + 1)^{3}(-x + 1)^{2}} - \frac{6}{(-x + 1)^{3}(x + 1)^{2}} - \frac{6}{(x + 1)^{4}(-x + 1)} + \frac{2}{(-x + 1)^{2}(x + 1)^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!