本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin({x}^{2}) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(x^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x^{2})\right)}{dx}\\=&cos(x^{2})*2x\\=&2xcos(x^{2})\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2xcos(x^{2})\right)}{dx}\\=&2cos(x^{2}) + 2x*-sin(x^{2})*2x\\=&2cos(x^{2}) - 4x^{2}sin(x^{2})\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2cos(x^{2}) - 4x^{2}sin(x^{2})\right)}{dx}\\=&2*-sin(x^{2})*2x - 4*2xsin(x^{2}) - 4x^{2}cos(x^{2})*2x\\=&-12xsin(x^{2}) - 8x^{3}cos(x^{2})\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -12xsin(x^{2}) - 8x^{3}cos(x^{2})\right)}{dx}\\=&-12sin(x^{2}) - 12xcos(x^{2})*2x - 8*3x^{2}cos(x^{2}) - 8x^{3}*-sin(x^{2})*2x\\=&-12sin(x^{2}) - 48x^{2}cos(x^{2}) + 16x^{4}sin(x^{2})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!