本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(3x - 3{e}^{x} + 3)}{(ln(x + 1) - x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{3x}{(ln(x + 1) - x)} - \frac{3{e}^{x}}{(ln(x + 1) - x)} + \frac{3}{(ln(x + 1) - x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{3x}{(ln(x + 1) - x)} - \frac{3{e}^{x}}{(ln(x + 1) - x)} + \frac{3}{(ln(x + 1) - x)}\right)}{dx}\\=&3(\frac{-(\frac{(1 + 0)}{(x + 1)} - 1)}{(ln(x + 1) - x)^{2}})x + \frac{3}{(ln(x + 1) - x)} - 3(\frac{-(\frac{(1 + 0)}{(x + 1)} - 1)}{(ln(x + 1) - x)^{2}}){e}^{x} - \frac{3({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(ln(x + 1) - x)} + 3(\frac{-(\frac{(1 + 0)}{(x + 1)} - 1)}{(ln(x + 1) - x)^{2}})\\=&\frac{-3x}{(ln(x + 1) - x)^{2}(x + 1)} + \frac{3x}{(ln(x + 1) - x)^{2}} - \frac{3{e}^{x}}{(ln(x + 1) - x)} + \frac{3{e}^{x}}{(ln(x + 1) - x)^{2}(x + 1)} - \frac{3{e}^{x}}{(ln(x + 1) - x)^{2}} - \frac{3}{(ln(x + 1) - x)^{2}(x + 1)} + \frac{3}{(ln(x + 1) - x)} + \frac{3}{(ln(x + 1) - x)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!