本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(\frac{1}{x} + ln(x))}{(x - ln(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{(x - ln(x))x} + \frac{ln(x)}{(x - ln(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{(x - ln(x))x} + \frac{ln(x)}{(x - ln(x))}\right)}{dx}\\=&\frac{(\frac{-(1 - \frac{1}{(x)})}{(x - ln(x))^{2}})}{x} + \frac{-1}{(x - ln(x))x^{2}} + (\frac{-(1 - \frac{1}{(x)})}{(x - ln(x))^{2}})ln(x) + \frac{1}{(x - ln(x))(x)}\\=&\frac{ln(x)}{(x - ln(x))^{2}x} + \frac{1}{(x - ln(x))^{2}x^{2}} - \frac{1}{(x - ln(x))x^{2}} - \frac{1}{(x - ln(x))^{2}x} - \frac{ln(x)}{(x - ln(x))^{2}} + \frac{1}{(x - ln(x))x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!