本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({x}^{2} + 2x)}{(ln(\frac{x}{2}) + x)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{(ln(\frac{1}{2}x) + x)} + \frac{2x}{(ln(\frac{1}{2}x) + x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{(ln(\frac{1}{2}x) + x)} + \frac{2x}{(ln(\frac{1}{2}x) + x)}\right)}{dx}\\=&(\frac{-(\frac{\frac{1}{2}}{(\frac{1}{2}x)} + 1)}{(ln(\frac{1}{2}x) + x)^{2}})x^{2} + \frac{2x}{(ln(\frac{1}{2}x) + x)} + 2(\frac{-(\frac{\frac{1}{2}}{(\frac{1}{2}x)} + 1)}{(ln(\frac{1}{2}x) + x)^{2}})x + \frac{2}{(ln(\frac{1}{2}x) + x)}\\=&\frac{-3x}{(ln(\frac{1}{2}x) + x)^{2}} + \frac{2x}{(ln(\frac{1}{2}x) + x)} - \frac{x^{2}}{(ln(\frac{1}{2}x) + x)^{2}} - \frac{2}{(ln(\frac{1}{2}x) + x)^{2}} + \frac{2}{(ln(\frac{1}{2}x) + x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-3x}{(ln(\frac{1}{2}x) + x)^{2}} + \frac{2x}{(ln(\frac{1}{2}x) + x)} - \frac{x^{2}}{(ln(\frac{1}{2}x) + x)^{2}} - \frac{2}{(ln(\frac{1}{2}x) + x)^{2}} + \frac{2}{(ln(\frac{1}{2}x) + x)}\right)}{dx}\\=&-3(\frac{-2(\frac{\frac{1}{2}}{(\frac{1}{2}x)} + 1)}{(ln(\frac{1}{2}x) + x)^{3}})x - \frac{3}{(ln(\frac{1}{2}x) + x)^{2}} + 2(\frac{-(\frac{\frac{1}{2}}{(\frac{1}{2}x)} + 1)}{(ln(\frac{1}{2}x) + x)^{2}})x + \frac{2}{(ln(\frac{1}{2}x) + x)} - (\frac{-2(\frac{\frac{1}{2}}{(\frac{1}{2}x)} + 1)}{(ln(\frac{1}{2}x) + x)^{3}})x^{2} - \frac{2x}{(ln(\frac{1}{2}x) + x)^{2}} - 2(\frac{-2(\frac{\frac{1}{2}}{(\frac{1}{2}x)} + 1)}{(ln(\frac{1}{2}x) + x)^{3}}) + 2(\frac{-(\frac{\frac{1}{2}}{(\frac{1}{2}x)} + 1)}{(ln(\frac{1}{2}x) + x)^{2}})\\=&\frac{8x}{(ln(\frac{1}{2}x) + x)^{3}} - \frac{4x}{(ln(\frac{1}{2}x) + x)^{2}} + \frac{2x^{2}}{(ln(\frac{1}{2}x) + x)^{3}} + \frac{4}{(ln(\frac{1}{2}x) + x)^{3}x} - \frac{2}{(ln(\frac{1}{2}x) + x)^{2}x} + \frac{2}{(ln(\frac{1}{2}x) + x)} - \frac{7}{(ln(\frac{1}{2}x) + x)^{2}} + \frac{10}{(ln(\frac{1}{2}x) + x)^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!