本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{x}{arctan(x)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x}{arctan(x)}\right)}{dx}\\=&\frac{1}{arctan(x)} + x(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})})\\=&\frac{1}{arctan(x)} - \frac{x}{(x^{2} + 1)arctan^{2}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{1}{arctan(x)} - \frac{x}{(x^{2} + 1)arctan^{2}(x)}\right)}{dx}\\=&(\frac{-(1)}{arctan^{2}(x)(1 + (x)^{2})}) - \frac{(\frac{-(2x + 0)}{(x^{2} + 1)^{2}})x}{arctan^{2}(x)} - \frac{1}{(x^{2} + 1)arctan^{2}(x)} - \frac{x(\frac{-2(1)}{arctan^{3}(x)(1 + (x)^{2})})}{(x^{2} + 1)}\\=&\frac{-2}{(x^{2} + 1)arctan^{2}(x)} + \frac{2x^{2}}{(x^{2} + 1)^{2}arctan^{2}(x)} + \frac{2x}{(x^{2} + 1)^{2}arctan^{3}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!