本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({(x + \frac{4}{x})}^{3})}{(8(x - \frac{4}{x}))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{3}}{(8x - \frac{32}{x})} + \frac{12x}{(8x - \frac{32}{x})} + \frac{48}{(8x - \frac{32}{x})x} + \frac{64}{(8x - \frac{32}{x})x^{3}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{3}}{(8x - \frac{32}{x})} + \frac{12x}{(8x - \frac{32}{x})} + \frac{48}{(8x - \frac{32}{x})x} + \frac{64}{(8x - \frac{32}{x})x^{3}}\right)}{dx}\\=&(\frac{-(8 - \frac{32*-1}{x^{2}})}{(8x - \frac{32}{x})^{2}})x^{3} + \frac{3x^{2}}{(8x - \frac{32}{x})} + 12(\frac{-(8 - \frac{32*-1}{x^{2}})}{(8x - \frac{32}{x})^{2}})x + \frac{12}{(8x - \frac{32}{x})} + \frac{48(\frac{-(8 - \frac{32*-1}{x^{2}})}{(8x - \frac{32}{x})^{2}})}{x} + \frac{48*-1}{(8x - \frac{32}{x})x^{2}} + \frac{64(\frac{-(8 - \frac{32*-1}{x^{2}})}{(8x - \frac{32}{x})^{2}})}{x^{3}} + \frac{64*-3}{(8x - \frac{32}{x})x^{4}}\\=&\frac{-128x}{(8x - \frac{32}{x})^{2}} - \frac{768}{(8x - \frac{32}{x})^{2}x} + \frac{3x^{2}}{(8x - \frac{32}{x})} - \frac{2048}{(8x - \frac{32}{x})^{2}x^{3}} - \frac{2048}{(8x - \frac{32}{x})^{2}x^{5}} - \frac{48}{(8x - \frac{32}{x})x^{2}} - \frac{8x^{3}}{(8x - \frac{32}{x})^{2}} - \frac{192}{(8x - \frac{32}{x})x^{4}} + \frac{12}{(8x - \frac{32}{x})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!