本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{\frac{21}{2}}{(cos(x)tan(2x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{21}{2}}{cos(x)tan(2x)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{21}{2}}{cos(x)tan(2x)}\right)}{dx}\\=&\frac{\frac{21}{2}sin(x)}{cos^{2}(x)tan(2x)} + \frac{\frac{21}{2}*-sec^{2}(2x)(2)}{cos(x)tan^{2}(2x)}\\=&\frac{21sin(x)}{2cos^{2}(x)tan(2x)} - \frac{21sec^{2}(2x)}{cos(x)tan^{2}(2x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{21sin(x)}{2cos^{2}(x)tan(2x)} - \frac{21sec^{2}(2x)}{cos(x)tan^{2}(2x)}\right)}{dx}\\=&\frac{21cos(x)}{2cos^{2}(x)tan(2x)} + \frac{21sin(x)*2sin(x)}{2cos^{3}(x)tan(2x)} + \frac{21sin(x)*-sec^{2}(2x)(2)}{2cos^{2}(x)tan^{2}(2x)} - \frac{21sin(x)sec^{2}(2x)}{cos^{2}(x)tan^{2}(2x)} - \frac{21*-2sec^{2}(2x)(2)sec^{2}(2x)}{cos(x)tan^{3}(2x)} - \frac{21*2sec^{2}(2x)tan(2x)*2}{cos(x)tan^{2}(2x)}\\=&\frac{84sec^{4}(2x)}{cos(x)tan^{3}(2x)} - \frac{42sin(x)sec^{2}(2x)}{cos^{2}(x)tan^{2}(2x)} + \frac{21sin^{2}(x)}{cos^{3}(x)tan(2x)} - \frac{84sec^{2}(2x)}{cos(x)tan(2x)} + \frac{21}{2cos(x)tan(2x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!