本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{1}{tan(x)} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{tan(x)}\right)}{dx}\\=&\frac{-sec^{2}(x)(1)}{tan^{2}(x)}\\=&\frac{-sec^{2}(x)}{tan^{2}(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-sec^{2}(x)}{tan^{2}(x)}\right)}{dx}\\=&\frac{--2sec^{2}(x)(1)sec^{2}(x)}{tan^{3}(x)} - \frac{2sec^{2}(x)tan(x)}{tan^{2}(x)}\\=&\frac{2sec^{4}(x)}{tan^{3}(x)} - \frac{2sec^{2}(x)}{tan(x)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2sec^{4}(x)}{tan^{3}(x)} - \frac{2sec^{2}(x)}{tan(x)}\right)}{dx}\\=&\frac{2*-3sec^{2}(x)(1)sec^{4}(x)}{tan^{4}(x)} + \frac{2*4sec^{4}(x)tan(x)}{tan^{3}(x)} - \frac{2*-sec^{2}(x)(1)sec^{2}(x)}{tan^{2}(x)} - \frac{2*2sec^{2}(x)tan(x)}{tan(x)}\\=&\frac{-6sec^{6}(x)}{tan^{4}(x)} + \frac{10sec^{4}(x)}{tan^{2}(x)} - 4sec^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!