本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(1 - x)}^{3}}{(27(2x + 1))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-x^{3}}{(54x + 27)} + \frac{3x^{2}}{(54x + 27)} - \frac{3x}{(54x + 27)} + \frac{1}{(54x + 27)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-x^{3}}{(54x + 27)} + \frac{3x^{2}}{(54x + 27)} - \frac{3x}{(54x + 27)} + \frac{1}{(54x + 27)}\right)}{dx}\\=&-(\frac{-(54 + 0)}{(54x + 27)^{2}})x^{3} - \frac{3x^{2}}{(54x + 27)} + 3(\frac{-(54 + 0)}{(54x + 27)^{2}})x^{2} + \frac{3*2x}{(54x + 27)} - 3(\frac{-(54 + 0)}{(54x + 27)^{2}})x - \frac{3}{(54x + 27)} + (\frac{-(54 + 0)}{(54x + 27)^{2}})\\=&\frac{54x^{3}}{(54x + 27)^{2}} - \frac{3x^{2}}{(54x + 27)} - \frac{162x^{2}}{(54x + 27)^{2}} + \frac{6x}{(54x + 27)} + \frac{162x}{(54x + 27)^{2}} - \frac{54}{(54x + 27)^{2}} - \frac{3}{(54x + 27)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{54x^{3}}{(54x + 27)^{2}} - \frac{3x^{2}}{(54x + 27)} - \frac{162x^{2}}{(54x + 27)^{2}} + \frac{6x}{(54x + 27)} + \frac{162x}{(54x + 27)^{2}} - \frac{54}{(54x + 27)^{2}} - \frac{3}{(54x + 27)}\right)}{dx}\\=&54(\frac{-2(54 + 0)}{(54x + 27)^{3}})x^{3} + \frac{54*3x^{2}}{(54x + 27)^{2}} - 3(\frac{-(54 + 0)}{(54x + 27)^{2}})x^{2} - \frac{3*2x}{(54x + 27)} - 162(\frac{-2(54 + 0)}{(54x + 27)^{3}})x^{2} - \frac{162*2x}{(54x + 27)^{2}} + 6(\frac{-(54 + 0)}{(54x + 27)^{2}})x + \frac{6}{(54x + 27)} + 162(\frac{-2(54 + 0)}{(54x + 27)^{3}})x + \frac{162}{(54x + 27)^{2}} - 54(\frac{-2(54 + 0)}{(54x + 27)^{3}}) - 3(\frac{-(54 + 0)}{(54x + 27)^{2}})\\=&\frac{-5832x^{3}}{(54x + 27)^{3}} + \frac{324x^{2}}{(54x + 27)^{2}} - \frac{6x}{(54x + 27)} + \frac{17496x^{2}}{(54x + 27)^{3}} - \frac{648x}{(54x + 27)^{2}} - \frac{17496x}{(54x + 27)^{3}} + \frac{5832}{(54x + 27)^{3}} + \frac{324}{(54x + 27)^{2}} + \frac{6}{(54x + 27)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!