本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数2ln(x) + \frac{({(x - 1)}^{2} + {y}^{2})}{(2{x}^{2})} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2ln(x) - \frac{1}{x} + \frac{\frac{1}{2}}{x^{2}} + \frac{\frac{1}{2}y^{2}}{x^{2}} + \frac{1}{2}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2ln(x) - \frac{1}{x} + \frac{\frac{1}{2}}{x^{2}} + \frac{\frac{1}{2}y^{2}}{x^{2}} + \frac{1}{2}\right)}{dx}\\=&\frac{2}{(x)} - \frac{-1}{x^{2}} + \frac{\frac{1}{2}*-2}{x^{3}} + \frac{\frac{1}{2}y^{2}*-2}{x^{3}} + 0\\=&\frac{2}{x} + \frac{1}{x^{2}} - \frac{1}{x^{3}} - \frac{y^{2}}{x^{3}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{2}{x} + \frac{1}{x^{2}} - \frac{1}{x^{3}} - \frac{y^{2}}{x^{3}}\right)}{dx}\\=&\frac{2*-1}{x^{2}} + \frac{-2}{x^{3}} - \frac{-3}{x^{4}} - \frac{y^{2}*-3}{x^{4}}\\=&\frac{-2}{x^{2}} - \frac{2}{x^{3}} + \frac{3}{x^{4}} + \frac{3y^{2}}{x^{4}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-2}{x^{2}} - \frac{2}{x^{3}} + \frac{3}{x^{4}} + \frac{3y^{2}}{x^{4}}\right)}{dx}\\=&\frac{-2*-2}{x^{3}} - \frac{2*-3}{x^{4}} + \frac{3*-4}{x^{5}} + \frac{3y^{2}*-4}{x^{5}}\\=&\frac{4}{x^{3}} + \frac{6}{x^{4}} - \frac{12}{x^{5}} - \frac{12y^{2}}{x^{5}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!