本次共计算 1 个题目:每一题对 x 求 10 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数cos(x)ln(cos(x)) - sin(x)ln(sin(x)) 关于 x 的 10 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(cos(x))cos(x) - ln(sin(x))sin(x)\\\\ &\color{blue}{函数的 10 阶导数:} \\=&\frac{25261sin^{2}(x)}{cos(x)} + \frac{106300sin^{4}(x)}{cos^{3}(x)} + \frac{182448sin^{6}(x)}{cos^{5}(x)} + \frac{140400sin^{8}(x)}{cos^{7}(x)} + \frac{40320sin^{10}(x)}{cos^{9}(x)} - \frac{40320cos^{10}(x)}{sin^{9}(x)} - \frac{140400cos^{8}(x)}{sin^{7}(x)} - \frac{182448cos^{6}(x)}{sin^{5}(x)} - \frac{106300cos^{4}(x)}{sin^{3}(x)} - \frac{25261cos^{2}(x)}{sin(x)} + 1319cos(x) - 1319sin(x) - ln(cos(x))cos(x) + ln(sin(x))sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!