本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数cos(x)ln(cos(x)) - sin(x)ln(sin(x)) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(cos(x))cos(x) - ln(sin(x))sin(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(cos(x))cos(x) - ln(sin(x))sin(x)\right)}{dx}\\=&\frac{-sin(x)cos(x)}{(cos(x))} + ln(cos(x))*-sin(x) - \frac{cos(x)sin(x)}{(sin(x))} - ln(sin(x))cos(x)\\=&-sin(x) - ln(cos(x))sin(x) - cos(x) - ln(sin(x))cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -sin(x) - ln(cos(x))sin(x) - cos(x) - ln(sin(x))cos(x)\right)}{dx}\\=&-cos(x) - \frac{-sin(x)sin(x)}{(cos(x))} - ln(cos(x))cos(x) - -sin(x) - \frac{cos(x)cos(x)}{(sin(x))} - ln(sin(x))*-sin(x)\\=&-cos(x) + \frac{sin^{2}(x)}{cos(x)} - ln(cos(x))cos(x) - \frac{cos^{2}(x)}{sin(x)} + sin(x) + ln(sin(x))sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!