本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{x}^{7}}{sin(x)} + 15x - cos(e^{x} - ln(x) + 3) - tan(x) 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{7}}{sin(x)} + 15x - cos(e^{x} - ln(x) + 3) - tan(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{7}}{sin(x)} + 15x - cos(e^{x} - ln(x) + 3) - tan(x)\right)}{dx}\\=&\frac{7x^{6}}{sin(x)} + \frac{x^{7}*-cos(x)}{sin^{2}(x)} + 15 - -sin(e^{x} - ln(x) + 3)(e^{x} - \frac{1}{(x)} + 0) - sec^{2}(x)(1)\\=&\frac{-x^{7}cos(x)}{sin^{2}(x)} + \frac{7x^{6}}{sin(x)} + e^{x}sin(e^{x} - ln(x) + 3) - \frac{sin(e^{x} - ln(x) + 3)}{x} - sec^{2}(x) + 15\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-x^{7}cos(x)}{sin^{2}(x)} + \frac{7x^{6}}{sin(x)} + e^{x}sin(e^{x} - ln(x) + 3) - \frac{sin(e^{x} - ln(x) + 3)}{x} - sec^{2}(x) + 15\right)}{dx}\\=&\frac{-7x^{6}cos(x)}{sin^{2}(x)} - \frac{x^{7}*-2cos(x)cos(x)}{sin^{3}(x)} - \frac{x^{7}*-sin(x)}{sin^{2}(x)} + \frac{7*6x^{5}}{sin(x)} + \frac{7x^{6}*-cos(x)}{sin^{2}(x)} + e^{x}sin(e^{x} - ln(x) + 3) + e^{x}cos(e^{x} - ln(x) + 3)(e^{x} - \frac{1}{(x)} + 0) - \frac{-sin(e^{x} - ln(x) + 3)}{x^{2}} - \frac{cos(e^{x} - ln(x) + 3)(e^{x} - \frac{1}{(x)} + 0)}{x} - 2sec^{2}(x)tan(x) + 0\\=&\frac{-14x^{6}cos(x)}{sin^{2}(x)} + \frac{2x^{7}cos^{2}(x)}{sin^{3}(x)} + \frac{x^{7}}{sin(x)} + \frac{42x^{5}}{sin(x)} + e^{x}sin(e^{x} - ln(x) + 3) + e^{{x}*{2}}cos(e^{x} - ln(x) + 3) - \frac{2e^{x}cos(e^{x} - ln(x) + 3)}{x} + \frac{sin(e^{x} - ln(x) + 3)}{x^{2}} + \frac{cos(e^{x} - ln(x) + 3)}{x^{2}} - 2tan(x)sec^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{-14x^{6}cos(x)}{sin^{2}(x)} + \frac{2x^{7}cos^{2}(x)}{sin^{3}(x)} + \frac{x^{7}}{sin(x)} + \frac{42x^{5}}{sin(x)} + e^{x}sin(e^{x} - ln(x) + 3) + e^{{x}*{2}}cos(e^{x} - ln(x) + 3) - \frac{2e^{x}cos(e^{x} - ln(x) + 3)}{x} + \frac{sin(e^{x} - ln(x) + 3)}{x^{2}} + \frac{cos(e^{x} - ln(x) + 3)}{x^{2}} - 2tan(x)sec^{2}(x)\right)}{dx}\\=&\frac{-14*6x^{5}cos(x)}{sin^{2}(x)} - \frac{14x^{6}*-2cos(x)cos(x)}{sin^{3}(x)} - \frac{14x^{6}*-sin(x)}{sin^{2}(x)} + \frac{2*7x^{6}cos^{2}(x)}{sin^{3}(x)} + \frac{2x^{7}*-3cos(x)cos^{2}(x)}{sin^{4}(x)} + \frac{2x^{7}*-2cos(x)sin(x)}{sin^{3}(x)} + \frac{7x^{6}}{sin(x)} + \frac{x^{7}*-cos(x)}{sin^{2}(x)} + \frac{42*5x^{4}}{sin(x)} + \frac{42x^{5}*-cos(x)}{sin^{2}(x)} + e^{x}sin(e^{x} - ln(x) + 3) + e^{x}cos(e^{x} - ln(x) + 3)(e^{x} - \frac{1}{(x)} + 0) + 2e^{x}e^{x}cos(e^{x} - ln(x) + 3) + e^{{x}*{2}}*-sin(e^{x} - ln(x) + 3)(e^{x} - \frac{1}{(x)} + 0) - \frac{2*-e^{x}cos(e^{x} - ln(x) + 3)}{x^{2}} - \frac{2e^{x}cos(e^{x} - ln(x) + 3)}{x} - \frac{2e^{x}*-sin(e^{x} - ln(x) + 3)(e^{x} - \frac{1}{(x)} + 0)}{x} + \frac{-2sin(e^{x} - ln(x) + 3)}{x^{3}} + \frac{cos(e^{x} - ln(x) + 3)(e^{x} - \frac{1}{(x)} + 0)}{x^{2}} + \frac{-2cos(e^{x} - ln(x) + 3)}{x^{3}} + \frac{-sin(e^{x} - ln(x) + 3)(e^{x} - \frac{1}{(x)} + 0)}{x^{2}} - 2sec^{2}(x)(1)sec^{2}(x) - 2tan(x)*2sec^{2}(x)tan(x)\\=&\frac{-126x^{5}cos(x)}{sin^{2}(x)} + \frac{42x^{6}cos^{2}(x)}{sin^{3}(x)} - \frac{5x^{7}cos(x)}{sin^{2}(x)} - \frac{6x^{7}cos^{3}(x)}{sin^{4}(x)} + \frac{21x^{6}}{sin(x)} + \frac{210x^{4}}{sin(x)} + e^{x}sin(e^{x} - ln(x) + 3) + 3e^{{x}*{2}}cos(e^{x} - ln(x) + 3) - \frac{3e^{x}cos(e^{x} - ln(x) + 3)}{x} - e^{{x}*{3}}sin(e^{x} - ln(x) + 3) + \frac{3e^{{x}*{2}}sin(e^{x} - ln(x) + 3)}{x} + \frac{3e^{x}cos(e^{x} - ln(x) + 3)}{x^{2}} - \frac{3e^{x}sin(e^{x} - ln(x) + 3)}{x^{2}} - \frac{sin(e^{x} - ln(x) + 3)}{x^{3}} - \frac{3cos(e^{x} - ln(x) + 3)}{x^{3}} - 2sec^{4}(x) - 4tan^{2}(x)sec^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!