本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{{x}^{(\frac{2}{3})}}{ln(1 + x)}^{\frac{1}{x}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{x^{\frac{2}{3}}}{ln(x + 1)}^{\frac{1}{x}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{x^{\frac{2}{3}}}{ln(x + 1)}^{\frac{1}{x}}\right)}{dx}\\=&({e}^{x^{\frac{2}{3}}}((\frac{\frac{2}{3}}{x^{\frac{1}{3}}})ln(e) + \frac{(x^{\frac{2}{3}})(0)}{(e)})){ln(x + 1)}^{\frac{1}{x}} + {e}^{x^{\frac{2}{3}}}({ln(x + 1)}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(ln(x + 1)) + \frac{(\frac{1}{x})(\frac{(1 + 0)}{(x + 1)})}{(ln(x + 1))}))\\=&\frac{-{ln(x + 1)}^{\frac{1}{x}}{e}^{x^{\frac{2}{3}}}ln(ln(x + 1))}{x^{2}} + \frac{2{e}^{x^{\frac{2}{3}}}{ln(x + 1)}^{\frac{1}{x}}}{3x^{\frac{1}{3}}} + \frac{{ln(x + 1)}^{\frac{1}{x}}{e}^{x^{\frac{2}{3}}}}{(x + 1)xln(x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!