本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(tan(x)sin(x))}^{sin(x)}ln(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (sin(x)tan(x))^{sin(x)}ln(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (sin(x)tan(x))^{sin(x)}ln(x)\right)}{dx}\\=&((sin(x)tan(x))^{sin(x)}((cos(x))ln(sin(x)tan(x)) + \frac{(sin(x))(cos(x)tan(x) + sin(x)sec^{2}(x)(1))}{(sin(x)tan(x))}))ln(x) + \frac{(sin(x)tan(x))^{sin(x)}}{(x)}\\=&(sin(x)tan(x))^{sin(x)}ln(sin(x)tan(x))ln(x)cos(x) + (sin(x)tan(x))^{sin(x)}ln(x)cos(x) + \frac{(sin(x)tan(x))^{sin(x)}ln(x)sin(x)sec^{2}(x)}{tan(x)} + \frac{(sin(x)tan(x))^{sin(x)}}{x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!