本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{sin(x)cos(x)ln(x)tan(x)}{({2}^{sin(x)})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {2}^{(-sin(x))}ln(x)sin(x)cos(x)tan(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {2}^{(-sin(x))}ln(x)sin(x)cos(x)tan(x)\right)}{dx}\\=&({2}^{(-sin(x))}((-cos(x))ln(2) + \frac{(-sin(x))(0)}{(2)}))ln(x)sin(x)cos(x)tan(x) + \frac{{2}^{(-sin(x))}sin(x)cos(x)tan(x)}{(x)} + {2}^{(-sin(x))}ln(x)cos(x)cos(x)tan(x) + {2}^{(-sin(x))}ln(x)sin(x)*-sin(x)tan(x) + {2}^{(-sin(x))}ln(x)sin(x)cos(x)sec^{2}(x)(1)\\=&-{2}^{(-sin(x))}ln(2)ln(x)sin(x)cos^{2}(x)tan(x) + \frac{{2}^{(-sin(x))}sin(x)cos(x)tan(x)}{x} + {2}^{(-sin(x))}ln(x)cos^{2}(x)tan(x) - {2}^{(-sin(x))}ln(x)sin^{2}(x)tan(x) + {2}^{(-sin(x))}ln(x)sin(x)cos(x)sec^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!