本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{x}^{2}sin(x)cos(x) 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{2}sin(x)cos(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{2}sin(x)cos(x)\right)}{dx}\\=&2xsin(x)cos(x) + x^{2}cos(x)cos(x) + x^{2}sin(x)*-sin(x)\\=&2xsin(x)cos(x) + x^{2}cos^{2}(x) - x^{2}sin^{2}(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2xsin(x)cos(x) + x^{2}cos^{2}(x) - x^{2}sin^{2}(x)\right)}{dx}\\=&2sin(x)cos(x) + 2xcos(x)cos(x) + 2xsin(x)*-sin(x) + 2xcos^{2}(x) + x^{2}*-2cos(x)sin(x) - 2xsin^{2}(x) - x^{2}*2sin(x)cos(x)\\=&2sin(x)cos(x) + 4xcos^{2}(x) - 4x^{2}sin(x)cos(x) - 4xsin^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2sin(x)cos(x) + 4xcos^{2}(x) - 4x^{2}sin(x)cos(x) - 4xsin^{2}(x)\right)}{dx}\\=&2cos(x)cos(x) + 2sin(x)*-sin(x) + 4cos^{2}(x) + 4x*-2cos(x)sin(x) - 4*2xsin(x)cos(x) - 4x^{2}cos(x)cos(x) - 4x^{2}sin(x)*-sin(x) - 4sin^{2}(x) - 4x*2sin(x)cos(x)\\=&6cos^{2}(x) - 6sin^{2}(x) - 24xsin(x)cos(x) - 4x^{2}cos^{2}(x) + 4x^{2}sin^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!