本次共计算 1 个题目:每一题对 x 求 3 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x - sin(x){\frac{1}{x}}^{3} 关于 x 的 3 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{sin(x)}{x^{3}} + x\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{sin(x)}{x^{3}} + x\right)}{dx}\\=& - \frac{-3sin(x)}{x^{4}} - \frac{cos(x)}{x^{3}} + 1\\=&\frac{3sin(x)}{x^{4}} - \frac{cos(x)}{x^{3}} + 1\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{3sin(x)}{x^{4}} - \frac{cos(x)}{x^{3}} + 1\right)}{dx}\\=&\frac{3*-4sin(x)}{x^{5}} + \frac{3cos(x)}{x^{4}} - \frac{-3cos(x)}{x^{4}} - \frac{-sin(x)}{x^{3}} + 0\\=& - \frac{12sin(x)}{x^{5}} + \frac{6cos(x)}{x^{4}} + \frac{sin(x)}{x^{3}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - \frac{12sin(x)}{x^{5}} + \frac{6cos(x)}{x^{4}} + \frac{sin(x)}{x^{3}}\right)}{dx}\\=& - \frac{12*-5sin(x)}{x^{6}} - \frac{12cos(x)}{x^{5}} + \frac{6*-4cos(x)}{x^{5}} + \frac{6*-sin(x)}{x^{4}} + \frac{-3sin(x)}{x^{4}} + \frac{cos(x)}{x^{3}}\\=&\frac{60sin(x)}{x^{6}} - \frac{36cos(x)}{x^{5}} - \frac{9sin(x)}{x^{4}} + \frac{cos(x)}{x^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!