本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(2 + x){e}^{\frac{1}{x}} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2{e}^{\frac{1}{x}} + x{e}^{\frac{1}{x}}\right)}{dx}\\=&2({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) + {e}^{\frac{1}{x}} + x({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))\\=&\frac{-2{e}^{\frac{1}{x}}}{x^{2}} + {e}^{\frac{1}{x}} - \frac{{e}^{\frac{1}{x}}}{x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2{e}^{\frac{1}{x}}}{x^{2}} + {e}^{\frac{1}{x}} - \frac{{e}^{\frac{1}{x}}}{x}\right)}{dx}\\=&\frac{-2*-2{e}^{\frac{1}{x}}}{x^{3}} - \frac{2({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{x^{2}} + ({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) - \frac{-{e}^{\frac{1}{x}}}{x^{2}} - \frac{({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{x}\\=&\frac{5{e}^{\frac{1}{x}}}{x^{3}} + \frac{2{e}^{\frac{1}{x}}}{x^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!