本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{cos(x)}^{2}}{(1 + cos(x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{cos^{2}(x)}{(cos(x) + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{cos^{2}(x)}{(cos(x) + 1)}\right)}{dx}\\=&(\frac{-(-sin(x) + 0)}{(cos(x) + 1)^{2}})cos^{2}(x) + \frac{-2cos(x)sin(x)}{(cos(x) + 1)}\\=&\frac{sin(x)cos^{2}(x)}{(cos(x) + 1)^{2}} - \frac{2sin(x)cos(x)}{(cos(x) + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{sin(x)cos^{2}(x)}{(cos(x) + 1)^{2}} - \frac{2sin(x)cos(x)}{(cos(x) + 1)}\right)}{dx}\\=&(\frac{-2(-sin(x) + 0)}{(cos(x) + 1)^{3}})sin(x)cos^{2}(x) + \frac{cos(x)cos^{2}(x)}{(cos(x) + 1)^{2}} + \frac{sin(x)*-2cos(x)sin(x)}{(cos(x) + 1)^{2}} - 2(\frac{-(-sin(x) + 0)}{(cos(x) + 1)^{2}})sin(x)cos(x) - \frac{2cos(x)cos(x)}{(cos(x) + 1)} - \frac{2sin(x)*-sin(x)}{(cos(x) + 1)}\\=&\frac{2sin^{2}(x)cos^{2}(x)}{(cos(x) + 1)^{3}} + \frac{cos^{3}(x)}{(cos(x) + 1)^{2}} - \frac{4sin^{2}(x)cos(x)}{(cos(x) + 1)^{2}} - \frac{2cos^{2}(x)}{(cos(x) + 1)} + \frac{2sin^{2}(x)}{(cos(x) + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!