本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{xln(x)}{({x}^{2} - 1)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{xln(x)}{(x^{2} - 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{xln(x)}{(x^{2} - 1)}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} - 1)^{2}})xln(x) + \frac{ln(x)}{(x^{2} - 1)} + \frac{x}{(x^{2} - 1)(x)}\\=&\frac{-2x^{2}ln(x)}{(x^{2} - 1)^{2}} + \frac{ln(x)}{(x^{2} - 1)} + \frac{1}{(x^{2} - 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2x^{2}ln(x)}{(x^{2} - 1)^{2}} + \frac{ln(x)}{(x^{2} - 1)} + \frac{1}{(x^{2} - 1)}\right)}{dx}\\=&-2(\frac{-2(2x + 0)}{(x^{2} - 1)^{3}})x^{2}ln(x) - \frac{2*2xln(x)}{(x^{2} - 1)^{2}} - \frac{2x^{2}}{(x^{2} - 1)^{2}(x)} + (\frac{-(2x + 0)}{(x^{2} - 1)^{2}})ln(x) + \frac{1}{(x^{2} - 1)(x)} + (\frac{-(2x + 0)}{(x^{2} - 1)^{2}})\\=&\frac{8x^{3}ln(x)}{(x^{2} - 1)^{3}} - \frac{6xln(x)}{(x^{2} - 1)^{2}} - \frac{4x}{(x^{2} - 1)^{2}} + \frac{1}{(x^{2} - 1)x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!