本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{x}^{6}}{(x + {x}^{2} + {x}^{3} + {x}^{4} + {x}^{5})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\right)}{dx}\\=&(\frac{-(1 + 2x + 3x^{2} + 4x^{3} + 5x^{4})}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}})x^{6} + \frac{6x^{5}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\\=&\frac{-2x^{7}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{3x^{8}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{4x^{9}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{5x^{10}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} - \frac{x^{6}}{(x + x^{2} + x^{3} + x^{4} + x^{5})^{2}} + \frac{6x^{5}}{(x + x^{2} + x^{3} + x^{4} + x^{5})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!