本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(x*2){(sin(x))}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2xsin^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2xsin^{2}(x)\right)}{dx}\\=&2sin^{2}(x) + 2x*2sin(x)cos(x)\\=&2sin^{2}(x) + 4xsin(x)cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( 2sin^{2}(x) + 4xsin(x)cos(x)\right)}{dx}\\=&2*2sin(x)cos(x) + 4sin(x)cos(x) + 4xcos(x)cos(x) + 4xsin(x)*-sin(x)\\=&8sin(x)cos(x) + 4xcos^{2}(x) - 4xsin^{2}(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 8sin(x)cos(x) + 4xcos^{2}(x) - 4xsin^{2}(x)\right)}{dx}\\=&8cos(x)cos(x) + 8sin(x)*-sin(x) + 4cos^{2}(x) + 4x*-2cos(x)sin(x) - 4sin^{2}(x) - 4x*2sin(x)cos(x)\\=&12cos^{2}(x) - 12sin^{2}(x) - 16xsin(x)cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 12cos^{2}(x) - 12sin^{2}(x) - 16xsin(x)cos(x)\right)}{dx}\\=&12*-2cos(x)sin(x) - 12*2sin(x)cos(x) - 16sin(x)cos(x) - 16xcos(x)cos(x) - 16xsin(x)*-sin(x)\\=&-64sin(x)cos(x) - 16xcos^{2}(x) + 16xsin^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!